The Laplace transform method for Burgers’ equation
نویسندگان
چکیده
The Laplace transform method (LTM) is introduced to solve Burgers’ equation. Because of the nonlinear term in Burgers’ equation, one cannot directly apply the LTM. Increment linearization technique is introduced to deal with the situation. This is a key idea in this paper. The increment linearization technique is the following: In time level t , we divide the solution u(x, t) into two parts: u(x, tk) and w(x, t), tk t tk+1, and obtain a time-dependent linear partial differential equation (PDE) for w(x, t). For this PDE, the LTM is applied to eliminate time dependency. The subsequent boundary value problem is solved by rational collocation method on transformed Chebyshev points. To face the well-known computational challenge represented by the numerical inversion of the Laplace transform, Talbot’s method is applied, consisting of numerically integrating the Bromwich integral on a special contour by means of trapezoidal or midpoint rules. Numerical experiments illustrate that the present method is effective and competitive. Copyright q 2009 John Wiley & Sons, Ltd.
منابع مشابه
Compare Adomian Decomposition Method and Laplace Decomposition Method for Burger's-Huxley and Burger's-Fisher equations
In this paper, Adomian decomposition method (ADM) and Laplace decomposition method (LDM) used to obtain series solutions of Burgers-Huxley and Burgers-Fisher Equations. In ADM the algorithm is illustrated by studying an initial value problem and LDM is based on the application of Laplace transform to nonlinear partial differential equations. In ADM only few terms of the expansion are required t...
متن کاملApplication of Laplace decomposition method for Burgers-Huxley and Burgers-Fisher equations
In this paper, we apply the Laplace decomposition method to obtain a series solutions of the Burgers-Huxley and Burgers-Fisher equations. The technique is based on the application of Laplace transform to nonlinear partial differential equations. The method does not need linearization, weak nonlinearity assumptions or perturbation theory and the nonlinear terms can be easily handled by using the...
متن کاملElectro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory
This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...
متن کاملAnalytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method
The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010